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We investigate the band-gap structure of some second-order differential 
operators associated with the propagation of waves in periodic two-component 
media. Particularly, the operator associated with the Maxwell equations with 
position-dependent dielectric constant e(x), x e R 3, is considered. The medium is 
assumed to consist of two components: the background, where e(x)= eh, and 
the embedded component composed of periodically positioned disjoint cubes, 
where ~(x) = r.,,. We show that the spectrum of the relevant operator has gaps 
provided some reasonable conditions are imposed on the parameters of the 
medium. Particularly, we show that one can open up at least one gap in the 
spectrum at any preassigned point 2 provided that the size of cubes L, the dis- 
tance / =  6L between them, and the contrast e = eb/~,, are chosen in such a way 
that L - - ' ~  2, and quantities e-  t6-3/2 and e62 are small enough. If these condi- 
tions are satisfied, the spectrum is located in a vicinity of width w ~  (e.tS~/2) - ~ of 
the set {Tz2L-2k 2 : k e Z 3 } .  This means, in particular, that any finite number of 
gaps between the elements of this discrete set can be opened simultaneously, 
and the corresponding bands of the spectrum can be made arbitrarily narrow. 
The method developed shows that if the embedded component consists of 
periodically positioned balls or other domains which cannot pack the space 
without overlapping, one should expect pseudogaps rather than real gaps in the 
spectrum. 

KEY WORDS: Waves; periodic dielectrics; periodic acoustic media; gaps in 
the spectrum. 

1. INTRODUCTION 

T h e  i d e a  o f  f i n d i n g  a n d  d e s i g n i n g  p e r i o d i c  d i e l e c t r i c  m a t e r i a l s  w h i c h  e x h i b i t  

g a p s  in  t h e  s p e c t r u m  w a s  i n t r o d u c e d  q u i t e  r e c e n t l y .  ~t'-'~ T h e  g e n e r a l  r e a s o n  
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for the rise of gaps lies in the coherent multiple scattering and interference 
of waves (see, for instance, John 13~ and references therein). The experi- 
mental results ~4 61 for periodic and disordered dielectrics indicate that the 
photonic gap regime can be achieved for some nonhomogeneous materials. 
The analysis of some approximate models and the numerical computa- 
tionsl7 ~l~ have shown the possibility of a gap (or pseudogap) regime for 
some two-component periodic dielectrics. The most recent theoretical and 
experimental achievements in the investigation of the photonic band-gap 
structures are published in the series of papers in ref. 12. 

To study the properties of wave propagation in a nonhomogeneous 
medium one has to investigate the spectral properties of the relevant 
self-adjoint differential operators with coefficients varying in space. Such an 
operator for electromagnetic waves has the form 

A ~ = V  x ('y(X) V x ~),  V- ~ - - 0 ,  7(x) = g- I (x) ,  x ~ R  3 (1) 

where ~U(x) is a complex vector function on R 3. The important analog of 
this operator is the following operator of second order acting on the space 
of complex scalar-valued functions r  on R3: 

r 0 = - ~  0 0 ~ y ( x ) ~ ,  x e R  3 (2) 
j=l  

It can be associated with the propagation of acoustic waves. In the first 
formula e(x) stands for the electric permittivity for electromagnetic waves, 
whereas for acoustic waves it stands for the mass density of the medium. 
The coefficient e(x), x E R  3, that we consider here is a periodic function 
bounded from above and below by positive constants. The important 
parameters of such a two-component periodic medium that can shape the 
spectrum ~6~ are the volume-filling fraction, the dielectric constant contrast 
eble~ (where eb and e~ are, respectively, the dielectric constants of the host 
material and the embedded components), and the shape of atoms of the 
embedded material as well as their arrangement. In particular, the high 
dielectric constant contrast favors the rise of gaps in the spectrum (some 
living tissues possess very high contrastt~31). 

We show here the existence of gaps under certain conditions for two- 
component dielectrics, which can be thought of as bubbles of air embedded 
in an optically dense background. The existence of gaps for the lattice 
(finite-difference) version of the relevant operators and the existence of 
pseudogaps for operators A and F have been already established 1~4'~51 (in 
particular, the limit location of the bands of the spectrum was found 1'5~ 
under the assumption that the contrast in dielectric constants between 
the background and the embedded component approaches infinity). Our 



Band-Gap Structure of Periodic Maxwell Operators 449 

analysis shows that to open up a gap in a preassigned point of the 
spectrum one has to provide certain quite simple relationships between the 
geometric parameters of the periodic arrangement of bubbles (which are 
assumed to be just cubes) and the contrast in the dielectric constant. 

2. S T A T E M E N T  OF RESULTS A N D  S K E T C H  OF THE PROOF 

The operators of interest are the operators A and F defined above. We 
begin with a construction of such a dielectric medium in the space R 3 for 
which the dielectric permittivity e(x), x E R 3, equals 1 on a set of disjoint 
bounded finite domains (a sort of air bubbles) spread in the space, and it 
takes on a constant value grater than 1 in the rest of the space, which we 
call the background, so e(x)>l there. We will be interested in the case 
when e tends to infinity on the background, that is, in the medium with a 
high contrast between the background and the bubbles. 

We suppose that the space R 3 is packed periodically without over- 
lapping by the cubes O,: 

O~=O+Lct, ~ Z  3 

0 = {X = (Xl ,  X2, X3)~ R3: 6L ~< .'(j~ (1 - 6 )  L, 1 ~<j< 3 } 

0 < 2 6 <  1 

where 26L is the distance between adjacent cubes O=. The union of O~ is 
denoted by ~r and its complimentary set, which forms the background, is 
denoted by ~': 

U o =~r o ~ n o t j = ~  for ~:~fl, ~ = R d - - ~ r  
~ Z  d 

The boundary OO~ of the cube O= is oriented in standard fashion: the 
normal vector v points toward the exterior of O,. We introduce e which 
depends on a parameter y < 1 in the following way: 

{i  if x ~ r  e=e(y,x)= -l if x~ .~  (3) 

Let us denote by a t  the spectrum of the Laplace operator with zero 
Neumann boundary conditions on the cube with the edge of length L in 
R 3, i.e., 

at= {n2L-2k 2,k~Z 3} (4) 

The spectrum of an operator A will be denoted by a(A). If the operators 
A and F are defined in appropriate way (for instance, by means of 
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corresponding quadratic forms), they will be self-adjoint and nonnegative, 
therefore their spectra lie on the positive semiaxis. 

2.1. Band-Gap Structure  of  the  S p e c t r u m  

Let us fix a positive L and introduce two parameters 

b=~(6L)-2, w=)~-3/2 L 2 (5) 

Then there exist an increasing function a(2): [0, ~)~--, [0, c~) and a 
constant C such that for N <  Cb the following relationships hold: 

a ( A ) n  [0, N ] _  U [la-a(N) w,/a+a(N)w] (6) 
l l6O'L,p~N 

a(A)c~[#-a(N)w, lt+a(N) w]#~,  k t~aLn  [0, N]  (7) 

a(F) n [0, N] ~ U [~ - a(N) w, I1 + a(N) w] (8) 
p E a L , / I ~ N  

a(F)n[lt-a(N)w,p+a(N)w]~(~, /a~atn[O,N] (9) 

In other words, for sufficiently small w the spectra of A and F in the 
interval [0, N] lie in a vicinity (of width proportional to w) of at, and 
each interval of this vicinity contains a nontrivial portion of the spectra 
a(A) and a(F) correspondingly. 

This statement shows, in particular, that for sufficiently small values 
of parameters w and b - '  the spectra will be concentrated very close to the 
discrete set a L, so the spectral gaps do exist, and their location can be 
predicted. 

2.2. Sketch  of  the  Proof  

Rescaling by x ' =  x/L, one can reduce the problem to the case when 
L = l, and so from now on we assume that L = I. Thus, e is a 1-periodic 
function of x ~ R 3. The standard fundamental domain of periods is denoted 
by Q, i.e., 

Q =  {xER3: 0~<.~i~< 1, 1 ~<j~<3} 

Since the operators A and F are periodic ones, we can apply the 
Bloch-Floquet theory ~t6 ~8~ and decompose them into the direct integrals 

A=I~ A(k)dk, F=~: F(k)dk (10) 
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where M = 2 n [ 0 ,  1-] 3 is the corresponding Brillouin zone, k is the 
quasimomentum, and the operators A(k) and F(k) can be described either 
as some differential operators on the cell Q with appropriate boundary 
conditions, or some differential operators on the torus T 3 =  R3/Z3. {16 18) 
The spectra of the operators A and F can be represented as follows: 

~(A)= 0 ~(A(k)), ~ ( r ) =  L) ,r(r(k)) (11) 
keM k~M 

In order to find the spectra of the operators A(k) and F(k), we consider 
the eigenvalue problems 

A(k) ~V(x) = ;.~V(x), r(k) ~V(x) = ;.~(x) (12) 

We shall treat O here as a part of the torus T 3 and introduce the region 
T =  T 3 -  O. The common boundary of O and T is denoted by dO = 8T, 
and ~v o and ~ r  are, respectively, the restrictions of ~P on O and T. 
Equations (12) can represented as follows: 

Operator A: 

VkX(VkX~rtO)=J.~rto, x ~ O ,  yVkX(VkXI/tr)=~,l/-'tT, x E T  (13) 

g T k - ~ o = 0 ,  x~O,  V , .~T=O,  x ~ T  (14) 

~o1,~o = ~ r [ , ~ o  

v • (Vk • ~Uo)l,~o = ?v • (Vk • ~r)l,~o (15) 

v-(Vk • ~o)1,~o = v-(Vk • ~ur)l,~o 

Operator F: 

- /Ik~bo=2~b o, x~O,  -yAk~Or=2~br, x ~ T  (16) 

@ol,vo = ~'rl,~o, v'Vk@oI,~.o=~'v'Vk@rl,~o (17) 

where v is the normal vector to dO. Here we denote by Vk the operator 
V - i k ,  where i is the imaginary unit, and by A k the operator ( V - i k )  z. 
Equations (15) are the implementation of the well-known relationships for 
the tangent and normal components of the electromagnetic field E and the 
magnetic field H on discontinuity surfaces of dielectric constant e or/and 
magnetic permittivity p. 

We shall corrsider now for simplicity the case k---0 and Eqs. (16), (17). 
We can reduce the boundary problem (16), (17) on the cell Q to a 
boundary problem on just cube O as follows. Let us consider the Dirichlet 
problem on the set T, 

--yAqlr=2~Or, x~T ,  ~Or(x)l,~r=qg(x), x~O0 (18) 
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where q~ is a function on dO from an appropriate Sobolev space. We solve 
this problem and define the operator K: tp~--~v.V~brloo. In other words, 
the operator K maps the Dirichlet boundary condition described by the 
function (p into the normal derivative of the solution of the Dirichlet 
boundary value problem on the boundary OT=OO (K is called the 
Dirichlet-to-Neumann mapping). The operator K depends on y and 6 
(in the case of an arbitrary k ~ M  it depends also on k), i.e., K=Kar.a.~. 
Suppose now that ~bo, q'r solve the problem (16), (17). Then we may treat 
the second equation in (16) and the first boundary equation (17) as the 
Dirichlet problem (18), where q~ = ~bo(X)],~ o. Then using the operator K we 
may rewrite the first equation in (16) and second boundary equation in 
(17) as follows: 

- V ~ o  = 2q, o, x~O, v'VqJol,~o-yK(~bol,~o)=O (19) 

In other words, we may replace the original boundary value problem (16), 
(17) on the cell Q by the boundary value problem (19) on the cube O. 
Using parameters (5) we can rewrite the problem (19) as follows: 

-V~ko = 2~bo, xeO,  v.V~bol~,o-w[63/2K](~koleo)=O (20) 

One can show that the norm of the operator 63/2K a s  an operator acting 
in appropriate Sobolev spaces of functions on the boundary 00  has 
uniformly (with respect to all parameters) bounded norm, if w and b-  i are 
sufficiently small, and so the problem (20) can be viewed as a perturbed 
Neumann boundary problem on the cube O. This observation leads straight- 
forwardly to the statements (8) and (9). The proof of the relationships (6) 
and (7) is analogous. 

The fact that not only the operator 63/2K, but even the operator 6K is 
uniformly bounded can be easily seen for the one-dimensional analog of the 
problem (16), (17). Namely, in this case we consider the interval [0, 1], 
which we treat as a torus, and the analog of (16), (17) for k = 0  can be 
written as follows: 

[0, 1] = T ~ O ,  T =  [0, 6], O = [ 6 ,  1] 

-qJ3=;4Jo, O<~x<~l, -~,q~-=,~qJ,., O~x<~,~ (21) 

~0o(,~)=~0~(~), ,/,~,(,~)=~,q,~-(6), qJo(l)=q,.r(0), qJb(l)-~q,~(0) 
(22) 

The analog of the Dirichlet problem in this case is 

- 7 ~ - = 2 ~ b r ,  0~<x~<fi, q,r(0)=~p(0), ~br(f)=tp(6) (23) 
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and the operator K can be represented as follows: 

F IO)l= _ ,  KLq,(a) 3 (2/7) '/2 [sin(~./~,) '/'- 6] 

, lr ,0,1 
x cos(2/~) '/2 6JL~o(a)J 

(24) 

Therefore, if we take into account (5) and introduce a new parameter 
w ' =  y/6, we can write the analog of the modified Neumann problem (20) 
in the following form: 

-~'b=,W,o, ,~<~x<~ l (25) 

~kb(1 ) - w'~E~bo(6) - cos(2 /b)  '/2 ~bo(l )3 = 0 (26) 

0g(6)  - w'#[ - ~bo(1 ) + cos(2 /b)  '/2 ~0o(6)] = 0 (27) 

= 6(2/7)  '/2 [s in(2 /y )  '/2 6] - '  = (2/b)  ~/2 [s in(2 /b)  1/2 ] - '  (28) 

It is clear now that if b-~ and w' are sufficiently small, then # is close to 
1, and the eigenvalues of the problem (25)-(28) lie in a vicinity propor- 
tional to w' of the spectrum of the corresponding Neumann problem [i.e., 
the problem (25)-(28) for w ' = 0 ] .  In other words, the analogs of the 
formulas (8) and (9) hold. 

R e m a r k .  One might wonder whether the condition that 7/63/2 is 
small is necessary, or the weaker condition of smallness of ~,/6 (as in the 
one-dimensional case) is sufficient. Our proof requires so far ~,/63/2, but this 
might be an artifact of the technique. 

3. C O M M E N T S  AND CONCLUSIONS 

The qualitative picture of the behavior of the spectrum can be 
presented as follows. One may think of the spectrum cr of either operator 
A or F being close to the union of two spectra crr and a o ,  where ~r r is the 
spectrum of the Dirichlet problem with zero boundary conditions on the 
domain T (this part of the spectrum lies very high), and Cro is the spectrum 
of the Neumann problem with zero normal derivative on the boundary of 
the domain O (for the one-dimensional model this can be verified by 
straightforward computation). This observation can be used to describe in 
simple fashion the mechanism of the rise of gaps in the spectrum cr and 
conditions under which this can happen. Remembering that we consider 
the high values for e(or, equivalently, small 7), the following conclusions 
can be made. 
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1. The spectrum at ,  being the spectrum of a relevant Dirichlet 
problem, has the minimum eigenvalue of the order b [-for the one- 
dimensional model this can be seen from the expression (28) for /3 and 
boundary conditions (26)-(27)]. Thus, if we want to have a gap G of a 
fixed finite size centered at a given point we must keep b-~ sufficiently 
small (at least ought to be well above the center of G). 

2. If b-~ tends to be small, then this together with the smallness of 
), forces 6 to be small, so the cube O = 0,~ approaches the fixed unit cube 
Q, and the corresponding spectrum ao tends to be the spectrum aN of the 
Neumann problem on the cube S with zero normal derivative. So the limit 
location of the centers of the bands of the spectrum as ),, b -  ~ ~ 0 coincides 
with the spectrum aN (this is proved also in ref. 15 in the sense of 
pseudogaps instead of gaps). 

3. The width of the bands of the spectrum is of order w, as was 
explained before. Thus, to open up gaps, w ought to be small enough. In 
other words, both the width of the background "corridor" between the "air 
bubbles" and the inverse contrast e-~ must tend to zero, but the rates of 
these asymptotics must be related (one with respect to another must be 
neither too fast nor too slow). The condition that w also tends to zero is 
not necessary for the existence of pseudogaps. (~5) 

4. The cubic form of the atom of embedded component is in a way 
optimal. The more general constraint on the atom of embedded material 
which provides the existence of gaps is the following. The shape of the 
atom (or combination of atoms which form a periodic cell) of the embedded 
material should be such that one can pack the space R 3 by the atoms of this 
shape. Therefore, the ball-like atoms are not good in this regard, and the 
corresponding media exhibit pseudogaps rather than real gaps (the existence 
of such pseudogaps is proved in ref. 15). 

The complete proofs of the results are rather lengthy, and they will be 
provided in subsequent articles. An analysis of the proofs shows that the 
function a(N) and the constant C in the main statement can be estimated 
explicitly. We plan to provide explicit analytic and numerical estimates 
elsewhere. 
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